论文标题

不确定性下的飓风救济物流运营计划的随机lookahead方法

A Stochastic Lookahead Approach for Hurricane Relief Logistics Operations Planning under Uncertainty

论文作者

Chang, Yanbin, Song, Yongjia, Eksioglu, Burak

论文摘要

在飓风之后,人道主义物流在及时向受影响的地区提供救济项目中起着至关重要的作用。本文提出了一个新颖的随机LookAhead框架,该框架以滚动的地平线方式实现了两阶段的随机编程模型,以解决杜鹃花后人道主义物流运营期间不断发展的不确定物流系统状态。在此滚动地平线框架中执行的两阶段随机编程模型被公式为混合组件编程问题。该模型旨在最大程度地减少运输和社会成本的总和。社会成本是根据不满意的需求的剥夺量来衡量的。我们广泛的数值实验结果和敏感性分析表明,与在静态方法中实现的两阶段随机编程模型相比,拟议方法在减少后期浮雕物流操作中产生的总成本的有效性。

In the aftermath of a hurricane, humanitarian logistics plays a critical role in delivering relief items to the affected areas in a timely fashion. This paper proposes a novel stochastic lookahead framework that implements a two-stage stochastic programming model in a rolling horizon fashion to address the evolving uncertain logistics system state during the post-hurricane humanitarian logistics operations. The two-stage stochastic programming model that executes in this rolling horizon framework is formulated as a mixed-integer programming problem. The model aims to minimize the sum of transportation and social costs. The social cost is measured as a function of deprivation for unsatisfied demand. Our extensive numerical experiment results and sensitivity analysis demonstrate the effectiveness of the proposed approach in reducing the total cost incurred during the post-hurricane relief logistics operations compared to the two-stage stochastic programming model implemented in a static approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源