论文标题

识别Covid-19传播的空间约束均匀簇

The identification of spatially constrained homogeneous clusters of Covid-19 transmission

论文作者

Benedetti, Roberto, Piersimoni, Federica, Pignataro, Giacomo, Vidoli, Francesco

论文摘要

本文介绍了一种方法,以确定一组在流行趋势方面最大程度地均匀的均匀区域。所提出的层次算法基于流行时间趋势之间的动态时间循环距离,其中单位受到空间接近图的约束。该论文基于不同的数据(相对于前几年的阳性测试和差异死亡人数的数量和差异死亡人数)以及不同的观察单位(省份和劳动力市场领域),包括对意大利这种方法的两种不同应用。最重要的是,这两种应用都表明了明确的地区的存在,其中感染的增长动态已得到很大的区分。因此,在整个国家领土上采用相同的锁定政策一直是最佳选择,这再次表明了对当地数据驱动的政策的迫切需求。

The paper introduces an approach to identify a set of spatially constrained homogeneous areas maximally homogeneous in terms of epidemic trends. The proposed hierarchical algorithm is based on the Dynamic TimeWarping distances between epidemic time trends where units are constrained by a spatial proximity graph. The paper includes two different applications of this approach to Italy, based on different data (number of positive test and number of differential deaths, with respect to the previous years) and on different observational units (provinces and Labour Market Areas). Both applications, above all the one related to Labour Market Areas, show the existence of well-defined areas, where the dynamics of growth of the infection have been strongly differentiated. The adoption of the same lock-down policy throughout the entire national territory has been therefore sub-optimal, showing once again the urgent need for local data-driven policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源