论文标题

分子云中的碳同位素分馏

Carbon isotopic fractionation in molecular clouds

论文作者

Colzi, L., Sipilä, O., Roueff, E., Caselli, P., Fontani, F.

论文摘要

从理论的角度研究了C分级,其具有不同的时间依赖性化学模型,包括同位素选择性的光解离和低温同位素交换反应。最近的化学模型预测,后者可能导致含硝基含量的物种的$^{13} $ c的耗竭,其中$^{12} $ c/$ c/$^{13} $ c比率是本地ISM中68个元素丰度比的两倍。由于碳同位素比通常用于评估$^{14} $ n/$^{15} $ n比与双异位方法的比率,因此详细研究C算法很重要,以避免错误的假设。在这项工作中,我们实施了一种具有新的同位素交换反应的气体化学模型,并在致密和冷分子气的背景下研究了它们的引入。 In particular, we investigated the $^{12}$C/$^{13}$C ratios of HNC, HCN, and CN using a grid of models, with temperatures and densities ranging from 10 to 50 K and 2$\times$10$^{3}$ to 2$\times$10$^{7}$ cm$^{-3}$, respectively. We suggest a possible $^{13}$C exchange through the $^{13}$C + C$_{3}$ $\rightarrow$ $^{12}$C +$^{13}$CC$_{2}$ reaction, which does not result in dilution, but rather in $^{13}$C enhancement, for molecules formed starting from atomic carbon.这种效果在CO的形成与其在谷物上的冻结之间的一段时间内有效。此外,我们表明$^{12} $ c/$^{13} $ c比率被预测为与大型星形形成区域的本地值68不同的因素为0.8-1.9。该结果还影响$^{14} $ n/$^{15} $ n比率:根据物理条件,预计用双异位方法获得的330的值预计为260-1150。最后,我们研究了$^{12} $ c/$^{13} $ c比率,通过改变宇宙射线电离速率:由于次级光子和宇宙射线反应,其比率随之增加。

C-fractionation has been studied from a theoretical point of view with different models of time-dependent chemistry, including both isotope-selective photodissociation and low-temperature isotopic exchange reactions. Recent chemical models predict that the latter may lead to a depletion of $^{13}$C in nitrile-bearing species, with $^{12}$C/$^{13}$C ratios two times higher than the elemental abundance ratio of 68 in the local ISM. Since the carbon isotopic ratio is commonly used to evaluate the $^{14}$N/$^{15}$N ratios with the double-isotope method, it is important to study C-fractionation in detail to avoid incorrect assumptions. In this work we implemented a gas-grain chemical model with new isotopic exchange reactions and investigated their introduction in the context of dense and cold molecular gas. In particular, we investigated the $^{12}$C/$^{13}$C ratios of HNC, HCN, and CN using a grid of models, with temperatures and densities ranging from 10 to 50 K and 2$\times$10$^{3}$ to 2$\times$10$^{7}$ cm$^{-3}$, respectively. We suggest a possible $^{13}$C exchange through the $^{13}$C + C$_{3}$ $\rightarrow$ $^{12}$C +$^{13}$CC$_{2}$ reaction, which does not result in dilution, but rather in $^{13}$C enhancement, for molecules formed starting from atomic carbon. This effect is efficient in a range of time between the formation of CO and its freeze-out on grains. Furthermore, we show that the $^{12}$C/$^{13}$C ratios of nitriles are predicted to be a factor 0.8-1.9 different from the local value of 68 for massive star-forming regions. This result also affects the $^{14}$N/$^{15}$N ratio: a value of 330 obtained with the double-isotope method is predicted to be 260-1150, depending on the physical conditions. Finally, we studied the $^{12}$C/$^{13}$C ratios by varying the cosmic-ray ionization rate: the ratios increase with it because of secondary photons and cosmic-ray reactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源