论文标题

控制纳米版本中量化的传播镁的非线性松弛

Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices

论文作者

Mohseni, M., Wang, Q., Heinz, B., Kewenig, M., Schneider, M., Kohl, F., Lägel, B., Dubs, C., Chumak, A. V., Pirro, P.

论文摘要

粘性吉尔伯特阻尼过程很好地描述了线性磁化动力学的松弛。然而,对于强烈的激发,非线性阻尼过程(例如通过镁麦克努尼相互作用衰减)出现并触发其他松弛通道。在这里,我们使用空间和时间分辨的微型布里鲁因光散射光谱和微磁模拟来研究Yttrium Iron Garnet纳米管束中强驱动强的传播自旋波的非线性弛豫。我们表明,在这个高度量化的系统中,非线性木元弛豫具有模式的特征,即,通过一系列散射事件,磁子散射到高阶量化模式。我们进一步展示了如何通过在单模设备中量化镁带的量子量耗散过程,在这种情况下,这种现象接近其基本极限。我们的研究扩展了有关纳米结构中非线性繁殖自旋波的知识,这对于构建高级自旋波元件以及在缩放系统中实现Bose-Einstein冷凝物至关重要。

Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源