论文标题
具有差异标准和路径标志的多元流上的无量纲异常检测
Dimensionless Anomaly Detection on Multivariate Streams with Variance Norm and Path Signature
论文作者
论文摘要
在本文中,我们提出了一种用于多元流的无量纲异常检测方法。我们的方法独立于不同流通道的测量单位,因此无量纲。我们首先提出了方差规范,这是对无限维特征空间和奇异经验协方差矩阵的概括的概括。然后,我们将方差标准与路径签名相结合,路径签名是提供流的全局特征的无限迭代积分集合,以提出Sigmahaknn,这是一种在(多变量)流上进行异常检测的方法。我们表明,Sigmahaknn是流动的流动,流串联的不变性,并且取决于路径签名的截断水平,具有分级的歧视能力。我们将Sigmahaknn作为开源软件实施,并执行广泛的数值实验,与隔离森林和局部异常因素相比,在语言分析,手写分析,船舶运动路径分析和Univariatianivariation Time-Time-TimeSieres分析等应用程序中,在流中的异常检测显着改善。
In this paper, we propose a dimensionless anomaly detection method for multivariate streams. Our method is independent of the unit of measurement for the different stream channels, therefore dimensionless. We first propose the variance norm, a generalisation of Mahalanobis distance to handle infinite-dimensional feature space and singular empirical covariance matrix rigorously. We then combine the variance norm with the path signature, an infinite collection of iterated integrals that provide global features of streams, to propose SigMahaKNN, a method for anomaly detection on (multivariate) streams. We show that SigMahaKNN is invariant to stream reparametrisation, stream concatenation and has a graded discrimination power depending on the truncation level of the path signature. We implement SigMahaKNN as an open-source software, and perform extensive numerical experiments, showing significantly improved anomaly detection on streams compared to isolation forest and local outlier factors in applications ranging from language analysis, hand-writing analysis, ship movement paths analysis and univariate time-series analysis.