论文标题
电荷密度浪潮和超导竞赛lu $ _5 $ ir $ _4 $ si $ _ {10} $:质子辐照研究
Charge density wave and superconductivity competition in Lu$_5$Ir$_4$Si$_{10}$ : a proton irradiation study
论文作者
论文摘要
在许多超导体家族中,真实空间调制电荷密度波(CDW)是无处不在的特征。特别是,CDW与超导性的关系是一个积极而开放的问题,最近在许多铜酸盐超导体中发现CDW以来,最近引起了很大的兴趣。在这里,我们表明,质子辐照引起的障碍是一个成熟的调谐参数,可以带来基本信息来回答此问题,因为它会影响CDW和具有不同和明确的机制的CDW和超导性。具体而言,在型号中,CDW超导体lu $ _5 $ ir $ _4 $ _4 $ si $ _ {10} $在4 \,k以下的77 \,K和S-wave超导下的1D CDW以下,我们显示障碍会增强超导温度的关键温度$ T_ \ MATHRM {c} $ {C c} $ {C c} $ {C c} CDW。讨论疾病如何影响超导性和CDW,我们提出了一个令人信服的案例,即超导性和CDW在lu $ _5 $ _5 $ _5 $ _4 $ _4 $ _4 $ _4 $ si $ _ {10} $的FERMI水平上竞争了状态的电子密度,并且我们通过更常见的调谐压力和脂肪来调和结果。由于其原型,1D,PEIERLS型CDW以及其超导性的S波,弱耦合性质,这项对Lu $ _5 $ _5 $ ir $ _4 $ _4 $ _4 $ _4 $ _4 $ _ {10} $的辐照研究提供了理解和将这些研究扩展到更复杂的密度波动和超级固定的基础上的基础。
Real-space modulated Charge Density Waves (CDW) are an ubiquituous feature in many families of superconductors. In particular, how CDW relates to superconductivity is an active and open question that has recently gathered much interest since CDWs have been discovered in many cuprates superconductors. Here we show that disorder induced by proton irradiation is a full-fledged tuning parameter that can bring essential information to answer this question as it affects CDW and superconductivity with different and unequivocal mechanisms. Specifically, in the model CDW superconductor Lu$_5$Ir$_4$Si$_{10}$ that develops a 1D CDW below 77\,K and s-wave superconductivity below 4\,K, we show that disorder enhances the superconducting critical temperature $T_\mathrm{c}$ and $H_\mathrm{c2}$ while it suppresses the CDW. Discussing how disorder affects both superconductivity and the CDW, we make a compelling case that superconductivity and CDW are competing for electronic density of states at the Fermi level in Lu$_5$Ir$_4$Si$_{10}$, and we reconcile the results obtained via the more common tuning parameters of pressure and doping. Owing to its prototypical, 1D, Peierls type CDW and the s-wave, weak-coupling nature of its superconductivity, this irradiation study of Lu$_5$Ir$_4$Si$_{10}$ provides the basis to understand and extend such studies to the more complex cases of density waves and superconductivity coexistence in heavy fermions, Fe-based or cuprates superconductors.