论文标题

建模长匹马任务作为顺序相互作用景观

Modeling Long-horizon Tasks as Sequential Interaction Landscapes

论文作者

Pirk, Sören, Hausman, Karol, Toshev, Alexander, Khansari, Mohi

论文摘要

复杂的对象操纵任务通常跨越长时间的操作序列。长期范围内的任务规划是机器人技术中的一个具有挑战性和开放的问题,其复杂性随着子任务数量的增加而成倍增长。在本文中,我们提出了一个深度学习网络,该网络仅从一组演示视频中学习跨越子任务的依赖性和过渡。我们将每个子任务表示为动作符号(例如移动杯),并表明可以直接从图像观测值中学习和预测这些符号。从演示和视觉观察中学习是我们方法的两个主要支柱。前者可以使学习可进行,因为它为网络提供了有关子任务之间最频繁的过渡和相关依赖性的信息(而不是探索所有可能的组合),而后者允许网络可以连续监视任务进展,从而交互性地适应环境中的变化。我们在两个长的地平线任务上评估了我们的框架:(1)人类执行的拼图块的块堆叠,以及(2)机器人操纵任务,涉及拾音器和物体的位置以及带有7道机器人臂的机柜门。我们表明,在执行机器人任务时可以执行复杂的计划,并且机器人可以交互适应环境的变化并从故障案例中恢复。

Complex object manipulation tasks often span over long sequences of operations. Task planning over long-time horizons is a challenging and open problem in robotics, and its complexity grows exponentially with an increasing number of subtasks. In this paper we present a deep learning network that learns dependencies and transitions across subtasks solely from a set of demonstration videos. We represent each subtask as an action symbol (e.g. move cup), and show that these symbols can be learned and predicted directly from image observations. Learning from demonstrations and visual observations are two main pillars of our approach. The former makes the learning tractable as it provides the network with information about the most frequent transitions and relevant dependency between subtasks (instead of exploring all possible combination), while the latter allows the network to continuously monitor the task progress and thus to interactively adapt to changes in the environment. We evaluate our framework on two long horizon tasks: (1) block stacking of puzzle pieces being executed by humans, and (2) a robot manipulation task involving pick and place of objects and sliding a cabinet door with a 7-DoF robot arm. We show that complex plans can be carried out when executing the robotic task and the robot can interactively adapt to changes in the environment and recover from failure cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源