论文标题

人工智能(AI) - 现代分布式计算系统中资源的中心管理

Artificial Intelligence (AI)-Centric Management of Resources in Modern Distributed Computing Systems

论文作者

Ilager, Shashikant, Muralidhar, Rajeev, Buyya, Rajkumar

论文摘要

当代分布式计算系统(DC),例如云数据中心是大规模,复杂,异质性和分布在多个网络和地理边界上的。另一方面,物联网(IoT)驱动的应用程序正在生产大量数据,需要实时处理和快速响应。有效地管理这些资源以为最终用户或应用程序提供可靠的服务是一项艰巨的任务。现有的资源管理系统(RMS)依赖于这种复合和动态系统不足的静态或启发式解决方案。由于数据可用性和处理能力而导致的人工智能(AI)的出现表现为探索自适应,准确且高效的RMS任务中数据驱动解决方案的可能性。在这方面,本文旨在吸引资源管理中数据驱动解决方案的动机和必需品。它确定了与之相关的挑战,并概述了潜在的未来研究方向,详细说明了如何在不同的RMS任务中应用数据驱动的技术。最后,它为DC提供了概念性数据驱动的RMS模型,并提供了两个实时用例(Google Cloud和Microsoft Azure的GPU频率缩放和数据中心资源管理),展示了以AI为中心的方法的可行性。

Contemporary Distributed Computing Systems (DCS) such as Cloud Data Centres are large scale, complex, heterogeneous, and distributed across multiple networks and geographical boundaries. On the other hand, the Internet of Things (IoT)-driven applications are producing a huge amount of data that requires real-time processing and fast response. Managing these resources efficiently to provide reliable services to end-users or applications is a challenging task. The existing Resource Management Systems (RMS) rely on either static or heuristic solutions inadequate for such composite and dynamic systems. The advent of Artificial Intelligence (AI) due to data availability and processing capabilities manifested into possibilities of exploring data-driven solutions in RMS tasks that are adaptive, accurate, and efficient. In this regard, this paper aims to draw the motivations and necessities for data-driven solutions in resource management. It identifies the challenges associated with it and outlines the potential future research directions detailing where and how to apply the data-driven techniques in the different RMS tasks. Finally, it provides a conceptual data-driven RMS model for DCS and presents the two real-time use cases (GPU frequency scaling and data centre resource management from Google Cloud and Microsoft Azure) demonstrating AI-centric approaches' feasibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源