论文标题
正规化的非政策TD学习
Regularized Off-Policy TD-Learning
论文作者
论文摘要
我们提出了一种新颖的$ L_1 $正规化的非货币收敛性TD学习方法(称为RO-TD),该方法能够学习具有低计算复杂性的价值函数的稀疏表示。 RO-TD基础的算法框架集成了两个关键思想:诸如TDC之类的非胶囊收敛梯度TD方法和非平滑凸优化的凸 - 孔concove鞍点格式,该方法可以使用在线凸正规化实现一阶求解器和功能选择。提出了RO-TD的详细理论和实验分析。提出了各种实验,以说明RO-TD算法的非政策收敛,稀疏特征选择能力和低计算成本。
We present a novel $l_1$ regularized off-policy convergent TD-learning method (termed RO-TD), which is able to learn sparse representations of value functions with low computational complexity. The algorithmic framework underlying RO-TD integrates two key ideas: off-policy convergent gradient TD methods, such as TDC, and a convex-concave saddle-point formulation of non-smooth convex optimization, which enables first-order solvers and feature selection using online convex regularization. A detailed theoretical and experimental analysis of RO-TD is presented. A variety of experiments are presented to illustrate the off-policy convergence, sparse feature selection capability and low computational cost of the RO-TD algorithm.