论文标题
DCARDNET:基于结构和血管造影相干断层扫描的多个级别的糖尿病性视网膜病变分类
DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based on Structural and Angiographic Optical Coherence Tomography
论文作者
论文摘要
目的:光学相干断层扫描(OCT)及其血管造影(OCTA)在糖尿病性视网膜病(DR)的早期检测和诊断方面具有几个优点。但是,尚未提出基于OCT数据和OCTA数据的自动化,完整的DR分类框架。在这项研究中,提出了一种基于卷积的神经网络(CNN)方法,以实现使用ECOCT和OCTA的DR分类框架。方法:具有自适应率辍学(DCARDNET)的密集,连续连接的神经网络是为DR分类设计的。此外,提出了自适应标签平滑性并用于抑制过度拟合。根据国际临床糖尿病性视网膜病量表,为每种情况产生三个单独的分类水平。在最高级别,网络将扫描归类为DR的引用或不可提及的。第二级将眼睛分类为非DR,非增殖性DR(NPDR)或增生性DR(PDR)。最后一个级别将案例归类为无DR,轻度和中等的NPDR,严重的NPDR和PDR。结果:我们使用10%的数据使用10倍的交叉验证来评估网络性能。这三个水平的总体分类精度分别为95.7%,85.0%和71.0%。结论/意义:转介到眼科医生的可靠,敏感和特定的自动分类框架可能是减少与DR相关的视力损失的关键技术。
Objective: Optical coherence tomography (OCT) and its angiography (OCTA) have several advantages for the early detection and diagnosis of diabetic retinopathy (DR). However, automated, complete DR classification frameworks based on both OCT and OCTA data have not been proposed. In this study, a convolutional neural network (CNN) based method is proposed to fulfill a DR classification framework using en face OCT and OCTA. Methods: A densely and continuously connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification. In addition, adaptive label smoothing was proposed and used to suppress overfitting. Three separate classification levels are generated for each case based on the International Clinical Diabetic Retinopathy scale. At the highest level the network classifies scans as referable or non-referable for DR. The second level classifies the eye as non-DR, non-proliferative DR (NPDR), or proliferative DR (PDR). The last level classifies the case as no DR, mild and moderate NPDR, severe NPDR, and PDR. Results: We used 10-fold cross-validation with 10% of the data to assess the networks performance. The overall classification accuracies of the three levels were 95.7%, 85.0%, and 71.0% respectively. Conclusion/Significance: A reliable, sensitive and specific automated classification framework for referral to an ophthalmologist can be a key technology for reducing vision loss related to DR.