论文标题
时间分辨FMRI使用高斯过程因子分析共享响应模型
Time-Resolved fMRI Shared Response Model using Gaussian Process Factor Analysis
论文作者
论文摘要
由于脑解剖结构和功能性脑部地形在参与者之间的高度差异,多受试者的FMRI研究很具有挑战性。汇总多主体FMRI数据的一种有效方法是提取共享表示形式,该表示可以过滤掉受试者之间不良的可变性。最近的一些工作已经实施了概率模型,以提取fMRI任务中的共享表示形式。在目前的工作中,我们通过将时间信息纳入共同的潜在结构中来改进这些模型。我们介绍了一个新的模型,共享的高斯过程因子分析(S-GPFA),该模型发现了共享的潜在轨迹和特定于主题的功能地形,同时建模fMRI数据中的时间相关性。我们证明了我们的模型在使用模拟数据揭示地面真相结构方面的功效,并在公开可用的Raider和Sherlock数据集上复制时间细分匹配和主体间相似性的实验性能。我们通过在大型多站点旋转数据集中分析其学识渊博的模型参数,进一步测试模型的实用性,这些参与者有或没有精神分裂症的参与者的社会认知任务。
Multi-subject fMRI studies are challenging due to the high variability of both brain anatomy and functional brain topographies across participants. An effective way of aggregating multi-subject fMRI data is to extract a shared representation that filters out unwanted variability among subjects. Some recent work has implemented probabilistic models to extract a shared representation in task fMRI. In the present work, we improve upon these models by incorporating temporal information in the common latent structures. We introduce a new model, Shared Gaussian Process Factor Analysis (S-GPFA), that discovers shared latent trajectories and subject-specific functional topographies, while modelling temporal correlation in fMRI data. We demonstrate the efficacy of our model in revealing ground truth latent structures using simulated data, and replicate experimental performance of time-segment matching and inter-subject similarity on the publicly available Raider and Sherlock datasets. We further test the utility of our model by analyzing its learned model parameters in the large multi-site SPINS dataset, on a social cognition task from participants with and without schizophrenia.