论文标题

循环线性因果模型的结构学习

Structure Learning for Cyclic Linear Causal Models

论文作者

Améndola, Carlos, Dettling, Philipp, Drton, Mathias, Onori, Federica, Wu, Jun

论文摘要

我们考虑基于观察数据的线性因果模型的结构学习问题。我们处理可能通过循环混合图给出的模型,从而允许反馈循环和潜在混杂因子的影响。在无弓的无环图上概括相关的工作,我们假设基础图很简单。这意味着任何两个观察到的变量都可以通过最多的直接因果效应相关,并且在结构方程中误差项之间(混淆引起的)相关性仅在没有直接因果效应的情况下发生。我们表明,尽管在环状情况下进行了新的细微之处,但被认为的简单循环模型是预期的维度,并且先前考虑的无弓无弓形无环形图的分布等效性的标准在循环案例中具有类似物。我们对模型维度的结果证明了基于分数的特定方法,用于结构学习线性高斯混合图模型的结构学习,我们通过贪婪的搜索实现。

We consider the problem of structure learning for linear causal models based on observational data. We treat models given by possibly cyclic mixed graphs, which allow for feedback loops and effects of latent confounders. Generalizing related work on bow-free acyclic graphs, we assume that the underlying graph is simple. This entails that any two observed variables can be related through at most one direct causal effect and that (confounding-induced) correlation between error terms in structural equations occurs only in absence of direct causal effects. We show that, despite new subtleties in the cyclic case, the considered simple cyclic models are of expected dimension and that a previously considered criterion for distributional equivalence of bow-free acyclic graphs has an analogue in the cyclic case. Our result on model dimension justifies in particular score-based methods for structure learning of linear Gaussian mixed graph models, which we implement via greedy search.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源