论文标题

用户友好的图形框架用于对象检测API

TensorFlow with user friendly Graphical Framework for object detection API

论文作者

Yoon, Heemoon, Lee, Sang-Hee, Park, Mira

论文摘要

TensorFlow是用于深度学习数据流的开源框架,并包含语音分析,自然语言过程和计算机视觉的应用程序编程界面(API)。特别是,通过命令行界面(CLI)(CLI)(CLI)和信息技术技术(IT)领域的命令行界面(CLI)和代码(IT)领域的代码(IT)领域,tensorflow对象检测API已被广泛应用于农业,工程和医学技术,但进入框架使用的障碍仍然很高。因此,这是为了在TensorFlow上开发一个用户友好的图形框架,用于对象检测API,该框架称为TensorFlow图形框架(TF-GRAF)。 TF-GRAF在服务器端根据用户帐户提供独立的虚拟环境,此外,在客户端无需CLI的情况下,数据预处理,培训和评估的执行。此外,还可以通过TF-GRAF操作超参数设置,训练过程的实时观察,测试图像的对象可视化以及测试数据的指标评估。尤其是,TF-GRAF支持通过GUI环境的SSD,更快RCNN,RFCN和Mask-RCNN的灵活模型选择,包括卷积神经网络(Inceptions和Resnets)。因此,TF-Graf允许任何人,即使没有任何以前了解深度学习框架的知识,也可以在不编码的情况下设计,训练和部署机器智能模型。由于TF-Graf负责设置和配置,因此任何人都可以在项目中使用深度学习技术,而无需花费时间来安装复杂的软件和环境。

TensorFlow is an open-source framework for deep learning dataflow and contains application programming interfaces (APIs) of voice analysis, natural language process, and computer vision. Especially, TensorFlow object detection API in computer vision field has been widely applied to technologies of agriculture, engineering, and medicine but barriers to entry of the framework usage is still high through command-line interface (CLI) and code for amateurs and beginners of information technology (IT) field. Therefore, this is aim to develop an user friendly Graphical Framework for object detection API on TensorFlow which is called TensorFlow Graphical Framework (TF-GraF). The TF-GraF provides independent virtual environments according to user accounts in server-side, additionally, execution of data preprocessing, training, and evaluation without CLI in client-side. Furthermore, hyperparameter setting, real-time observation of training process, object visualization of test images, and metrics evaluations of test data can also be operated via TF-GraF. Especially, TF-GraF supports flexible model selection of SSD, Faster-RCNN, RFCN, and Mask-RCNN including convolutional neural networks (inceptions and ResNets) through GUI environment. Consequently, TF-GraF allows anyone, even without any previous knowledge of deep learning frameworks, to design, train and deploy machine intelligence models without coding. Since TF-GraF takes care of setting and configuration, it allows anyone to use deep learning technology for their project without spending time to install complex software and environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源