论文标题

关于与当地快速故障转移的完美弹性的可行性

On the Feasibility of Perfect Resilience with Local Fast Failover

论文作者

Foerster, Klaus-Tycho, Hirvonen, Juho, Pignolet, Yvonne-Anne, Schmid, Stefan, Tredan, Gilles

论文摘要

为了提供高弹性并迅速做出链接故障的反应,现代计算机网络支持完全分散的流动重新路由,也称为局部快速故障转移。简而言之,局部快速故障转移算法的任务是仅使用本地可用信息为每个节点预定快速故障转移规则。这些规则确定可以从中可以到达数据包的每个传入链接,并确定本地链接失败的集合(即,失败的链接事件与节点的失败链接),应在其上转发数据包。理想情况下,这样的本地快速故障转移算法确定性地提供了完美的弹性:只要基础网络保持连接,从任何来源发出的数据包都可以达到任何目标。 Feigenbaum等。 (ACM PODC 2012)以及Chiesa等。 (IEEE/ACMTrans。Netw。2017)表明,并非总是有可能提供完美的弹性。有趣的是,目前,关于完美弹性的可行性目前还没有更多的知识。 本文通过本地快速故障转移重新审视了完美的弹性,这既在源可以使用也不能用于转发决策的模型中。我们首先得出了几个相当普遍的不可能结果:通过建立图形未成年人与弹性之间的联系,我们证明不可能在任何非平面图上实现完美的弹性;此外,尽管有必要平面,但它也不足以达到完美的弹性。从正面的一面来看,我们表明在链接细分下关闭的图形家族允许简单有效的故障转移算法,这些算法简单地跳过了失败的链接。我们通过得出针对外平面图和相关场景的完美弹性,以及在失败后拓扑结束的情况下,证明了这一技术。

In order to provide a high resilience and to react quickly to link failures, modern computer networks support fully decentralized flow rerouting, also known as local fast failover. In a nutshell, the task of a local fast failover algorithm is to pre-define fast failover rules for each node using locally available information only. These rules determine for each incoming link from which a packet may arrive and the set of local link failures (i.e., the failed links incident to a node), on which outgoing link a packet should be forwarded. Ideally, such a local fast failover algorithm provides a perfect resilience deterministically: a packet emitted from any source can reach any target, as long as the underlying network remains connected. Feigenbaum et al. (ACM PODC 2012) and also Chiesa et al. (IEEE/ACM Trans. Netw. 2017) showed that it is not always possible to provide perfect resilience. Interestingly, not much more is known currently about the feasibility of perfect resilience. This paper revisits perfect resilience with local fast failover, both in a model where the source can and cannot be used for forwarding decisions. We first derive several fairly general impossibility results: By establishing a connection between graph minors and resilience, we prove that it is impossible to achieve perfect resilience on any non-planar graph; furthermore, while planarity is necessary, it is also not sufficient for perfect resilience. On the positive side, we show that graph families closed under link subdivision allow for simple and efficient failover algorithms which simply skip failed links. We demonstrate this technique by deriving perfect resilience for outerplanar graphs and related scenarios, as well as for scenarios where the source and target are topologically close after failures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源