论文标题
多处理器多任务计划中修改的SRPT的性能分析
Performance Analysis of Modified SRPT in Multiple-Processor Multitask Scheduling
论文作者
论文摘要
在本文中,我们研究了确定性和随机模型中的多处理器多任务调度问题,其中每个作业都有多个任务,并且只有在完成所有任务时才完成。我们考虑并分析修改后的最短剩余处理时间(M-SRPT)调度算法,这是对SRPT的简单修改,该修改始终在可能的情况下根据SRPT调整作业,而在任意顺序进行处理。事实证明,M-SRPT算法获得了$θ(\logα+β)$的竞争比率,以最大程度地减少响应时间,其中$α$表示最大工作工作量和最低工作工作量之间的比率,$β$表示最大的非率份的非优先任务工作和最小工作负载之间的比率。另外,当有恒定数量的机器数量时,达到的竞争比率被证明是最佳的(最高恒定因素)。我们进一步考虑了Poisson到达和一般工作负载分配中的问题(\ ie,m/gi/$ n $系统),并表明M-SRPT在交通强度$ρ$接近$ 1 $的情况下达到渐近的最佳平均响应时间,如果工作尺寸分布有有限的支持。除了有限的工作工作量外,M-SRPT的渐近最优性还适用于具有某些概率假设的无限工作规模分布,例如,具有有限任务工作负载的M/M/M/$ N $系统。作为一种特殊情况,我们表明M-SRPT是M/M/$ 1 $模型的渐近最佳,其中允许任务尺寸的分布获得无限的支持。
In this paper we study the multiple-processor multitask scheduling problem in both deterministic and stochastic models, where each job have several tasks and is complete only when all its tasks are finished. We consider and analyze Modified Shortest Remaining Processing Time (M-SRPT) scheduling algorithm, a simple modification of SRPT, which always schedules jobs according to SRPT whenever possible, while processes tasks in an arbitrary order. The M-SRPT algorithm is proved to achieve a competitive ratio of $Θ(\log α+β)$ for minimizing response time, where $α$ denotes the ratio between maximum job workload and minimum job workload, $β$ represents the ratio between maximum non-preemptive task workload and minimum job workload. In addition, the competitive ratio achieved is shown to be optimal (up to a constant factor), when there are constant number of machines. We further consider the problem under Poisson arrival and general workload distribution (\ie, M/GI/$N$ system), and show that M-SRPT achieves asymptotic optimal mean response time when the traffic intensity $ρ$ approaches $1$, if job size distribution has finite support. Beyond finite job workload, the asymptotic optimality of M-SRPT also holds for infinite job size distributions with certain probabilistic assumptions, for example, M/M/$N$ system with finite task workload. As a special case, we show that M-SRPT is asymptotic optimal in M/M/$1$ model, in which the task size distribution is allowed to have infinite support.