论文标题

O(N)自旋系统和相关模型的横向相关性的指数衰减

Exponential decay of transverse correlations for O(N) spin systems and related models

论文作者

Lees, Benjamin, Taggi, Lorenzo

论文摘要

我们证明,对于外部磁场的任意(非零)值的自旋O(n)模型中的横向相关性的指数衰减。当n> 3时,我们的结果是新的,在这种情况下,没有lee-yang定理,当n = 2、3 = 2、3和多组件的contess consents consents consents contess contess contess contess contess contess contess contess conterments ne and Lee-yang Theorem均可使用。关键成分是该模型作为彩色随机路径系统,“颜色开关”引理系统和采样过程的表示,使我们可以从开放路径的“典型”长度上方绑定。

We prove exponential decay of transverse correlations in the Spin O(N) model for arbitrary (non-zero) values of the external magnetic field and arbitrary spin dimension N > 1. Our result is new when N > 3, in which case no Lee-Yang theorem is available, it is an alternative to Lee-Yang when N = 2, 3, and also holds for a wide class of multi-component spin systems with continuous symmetry. The key ingredients are a representation of the model as a system of coloured random paths, a `colour-switch' lemma, and a sampling procedure which allows us to bound from above the `typical' length of the open paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源