论文标题

圆环中G-Drazin的广义Cline公式

Generalized Cline's formula for G-Drazin inverse in a ring

论文作者

Chen, Huanyin, Abdolyousefi, Marjan Sheibani

论文摘要

在本文中,我们为广义Drazin倒数提供了广义的Cline公式。令$ r $为戒指,让$ a,b,c,d \ in R $满足$$ \ begin {array} {c} {c}(ac)^2 =(db)(ac)(ac),(db)^2 =(ac)(db)(db)(db); \\ b(ac)A = b(db(db)a,c(db)a,c(ac)a,c(ac)$ n = c(ac)$ $ in。 r^d $ if,仅当r^d $中的$ bd \。在这种情况下,$(bd)^d = b((ac)^d)^2 d $。我们还提出了Cline的广义Cline公式,用于Drazin和Group Inverses。还研究了BANACH代数中一些较弱的条件。这些扩展了Cline公式在LIAO,Chen和Cui逆的G-德拉津的主要结果(Bull。Malays。Math。Soc。,37(2014),37-42,37-42),Lian和Zeng(Turk。J.Math。,40(2016),161-165,161-165),以及Miller and Miller and Miller and Zguitti(rend。 105-114)。作为一种应用,获得了有界线性算子在BANACH空间上的新公共光谱特性。

In this paper, we give a generalized Cline's formula for the generalized Drazin inverse. Let $R$ be a ring, and let $a,b,c,d\in R$ satisfying $$\begin{array}{c} (ac)^2 = (db)(ac), (db)^2 = (ac)(db);\\ b(ac)a = b(db)a, c(ac)d = c(db)d.\end{array}$$ Then $ac\in R^d$ if and only if $bd\in R^d$. In this case, $(bd)^d = b((ac)^d)^2 d$. We also present generalized Cline's formulas for Drazin and group inverses. Some weaker conditions in a Banach algebra are also investigated. These extend the main results of Cline's formula on g-Drazin inverse of Liao, Chen and Cui (Bull. Malays. Math. Soc., 37 (2014), 37-42), Lian and Zeng (Turk. J. Math., 40 (2016), 161-165) and Miller and Zguitti (Rend. Circ. Mat. Palermo, II. Ser., 67 (2018), 105-114). As an application, new common spectral property of bounded linear operators over Banach spaces are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源