论文标题
来自BMS方程的敌军振幅和非全球对数
Eikonal amplitudes and non-global logarithms from the BMS equation
论文作者
论文摘要
Banfi-Marchesini-smye(BMS)方程将非全球对数解释为大NC近似中扰动理论中的所有顺序。我们表明,正确嵌入了该方程式中的软能元素的平方幅度,并明确验证它们与我们先前在大的NC限制中衍生出的振幅与强度较强的限制中的第六顺序相吻合。我们对E+ E碰撞中特定半球质量分布的非全球对数进行分析计算,从而确认了我们先前的半数结果。我们表明,对BMS方程的解决方案可以施放到无限数量的指数数量的产物中,每个指数恢复表现出表现对称模式的Feynman图,并明确执行这些指数中的第一个指数的计算。
The Banfi-Marchesini-Smye (BMS) equation accounts for non-global logarithms to all orders in perturbation theory in the large-Nc approximation. We show that the squared amplitudes for the emission of soft energy-ordered gluons are correctly embedded in this equation, and explicitly verify that they coincide with those derived in our previous work in the large-Nc limit up to sixth order in the strong coupling. We perform analytical calculations for the non-global logarithms up to fourth order for the specific hemisphere mass distribution in e+ e- collisions, thus confirming our previous semi-numerical results. We show that the solution to the BMS equation may be cast into a product of an infinite number of exponentials each of which resums a class of Feynman diagrams that manifest a symmetry pattern, and explicitly carry out the computation of the first of these exponentials.