论文标题

您可以参加Akemann-Weaver的$ \ diamondsuit _ {\ aleph_1} $离开吗?

Can you take Akemann--Weaver's $\diamondsuit_{\aleph_1}$ away?

论文作者

Calderón, Daniel, Farah, Ilijas

论文摘要

通过Glimm的二分法,是一种可分离的,简单的$ \ textrm {c}^*$ - 代数具有连续的单位不等式的不可减至的不可约性表示,并且只有当它是非类型i时,它是不可约束的,而所有不可修复的表示是iN type nim type,naim equival是否等于。 $ \ textrm {c}^*$ - 代数。 2004年,Akemann和Weaver使用Jensen的Diamond Axiom $ \ DiamondSuit _ {\ Aleph_1} $,对Naimark的问题做出了负面答案,这是一种强大的对角度化原则,暗示着连续假设($ \ \ sathsf {Ch} $)。由于罗森伯格(Rosenberg)的结果,一个简单的简单$ \ textrm {c}^*$ - 具有独特的不可约代表的代数,我们表明,通过构建一个可分离的,简单的$ \ textrm {c}^*$ - algebra的示例,可以很好地表明这一结果,从而可以满足两种不可及的代表。二分法。我们的建筑使用Jensen的$ \ DiamondSuit _ {\ Aleph_1} $,表示为$ \ Diamondsuit^\ Mathsf {Cohen} $,该{Cohen} $,它以$ \ sathsf {Ch} $的否定为原始Cohen的模型。我们还证明,$ \ diamondsuit^\ mathsf {cohen} $足够对奈马克(Naimark)的问题给出负面答案。我们的主要技术工具是一个强迫概念,该概念通常添加给定的$ \ textrm {c}^*$ - 代数的自动形态,并在其纯状态下采取规定的诉讼。

By Glimm's dichotomy, a separable, simple $\textrm{C}^*$-algebra has continuum-many unitarily inequivalent irreducible representations if, and only if, it is non-type I while all of its irreducible representations are unitarily equivalent if, and only if, it is type I. Naimark asked whether the latter equivalence holds for all $\textrm{C}^*$-algebras. In 2004, Akemann and Weaver gave a negative answer to Naimark's problem, using Jensen's diamond axiom $\diamondsuit_{\aleph_1}$, a powerful diagonalization principle that implies the Continuum Hypothesis ($\mathsf{CH}$). By a result of Rosenberg, a separably represented simple $\textrm{C}^*$-algebra with a unique irreducible representation is necessarily of type I. We show that this result is sharp by constructing an example of a separably represented, simple $\textrm{C}^*$-algebra that has exactly two inequivalent irreducible representations, and therefore does not satisfy the conclusion of Glimm's dichotomy. Our construction uses a weakening of Jensen's $\diamondsuit_{\aleph_1}$, denoted $\diamondsuit^\mathsf{Cohen}$, that holds in the original Cohen's model for the negation of $\mathsf{CH}$. We also prove that $\diamondsuit^\mathsf{Cohen}$ suffices to give a negative answer to Naimark's problem. Our main technical tool is a forcing notion that generically adds an automorphism of a given $\textrm{C}^*$-algebra with a prescribed action on its space of pure states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源