论文标题
空间准文献构图运算符,并应用于Neumann特征值
Space quasiconformal composition operators with applications to Neumann eigenvalues
论文作者
论文摘要
在本文中,我们获得了$ p $ laplace操作员的neumann特征值的估算值,这些空间域满足了quasihyperbolic边界条件。建议的方法基于准文构映射生成的组成算子及其应用于Sobolev-Poincaré-Qualities。通过使用锋利的反向Hölder不平等的版本,我们可以完善对准球的估计值,即在整个空间的准形式映射下的球图像。
In this article we obtain estimates of Neumann eigenvalues of $p$-Laplace operators in a large class of space domains satisfying quasihyperbolic boundary conditions. The suggested method is based on composition operators generated by quasiconformal mappings and their applications to Sobolev-Poincaré-inequalities. By using a sharp version of the inverse Hölder inequality we refine our estimates for quasi-balls, that is, images of balls under quasiconformal mappings of the whole space.