论文标题

闸门控制的悬浮钛nanobridge Supercurrent晶体管

Gate-controlled Suspended Titanium Nanobridge Supercurrent Transistor

论文作者

Rocci, M., De Simoni, G., Puglia, C., Esposti, D. Degli, Strambini, E., Zannier, V., Sorba, L., Giazotto, F.

论文摘要

在全金属上流纳米透射器上进行的一系列实验家族中,最近显示了令人惊讶的门控效应。这些包括对临界超电流的完全抑制,准粒子种群的增加,超导阶段的操纵以及开关电流分布的扩大。除了未来应用的高潜力外,这些发现提出了有关这些现象起源的基本问题。迄今为止,两个互补的假设正在争议中:超导体表面的静电触发轨道极化,或从门中提取的高能性准粒子注射。在这里,我们通过完全悬挂的门纳米运输器来解决这个关键问题。我们的几何形状允许消除通过基板直接注射准粒子,从而使通过真空的冷电子场发射成为唯一可能的电荷传输机构。借助完全数值的3D模型,并结合了观察到的现象学和热考虑,我们可以排除,并且具有任何现实的可能性,即冷电子场发射的发生。鉴于理解超导纳米结构中门控效应的微观性质,排除这两个微不足道的现象至关重要,这代表了当代超导性的一个未解决的难题。然而,从技术的角度来看,我们的悬浮制造技术提供了能够实施各种应用程序和基本研究,将超导性与纳米力学相结合。

In a family of experiments carried on all-metallic supercurrent nano-transistors a surprising gating effect has been recently shown. These include the full suppression of the critical supercurrent, the increase of quasiparticle population, the manipulation of the superconducting phase, and the broadening of the switching current distributions. Aside from the high potential for future applications, these findings raised fundamental questions on the origin of these phenomena. To date, two complementary hypotheses are under debate: an electrostatically-triggered orbital polarization at the superconductor surface, or the injection of highly-energetic quasiparticles extracted from the gate. Here, we tackle this crucial issue via a fully suspended gate-controlled Ti nano-transistor. Our geometry allows to eliminate any direct injection of quasiparticles through the substrate thereby making cold electron field emission through the vacuum the only possible charge transport mechanism. With the aid of a fully numerical 3D model in combination with the observed phenomenology and thermal considerations we can rule out, with any realistic likelihood, the occurrence of cold electron field emission. Excluding these two trivial phenomena is pivotal in light of understanding the microscopic nature of gating effect in superconducting nanostructures, which represents an unsolved puzzle in contemporary superconductivity. Yet, from the technological point of view, our suspended fabrication technique provides the enabling technology to implement a variety of applications and fundamental studies combining, for instance, superconductivity with nano-mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源