论文标题
适用于联邦差异私有平均的准确,可扩展和可验证的协议
An Accurate, Scalable and Verifiable Protocol for Federated Differentially Private Averaging
论文作者
论文摘要
像联邦学习一样,从几个政党拥有的数据中学习,对提供给参与者提供的隐私保证和在恶意当事人在场的情况下的正确性提出了挑战。我们在分布式平均的背景下应对这些挑战,这是联合学习算法的重要组成部分。我们的第一个贡献是一个可扩展的协议,其中参与者沿网络图的边缘交换相关的高斯噪声,并与每个方添加的独立噪声相辅相成。我们分析了我们的协议的差异隐私保证以及在勾结的恶意派对下图形拓扑的影响,表明即使每个诚实的党派仅与随机选择的其他其他政党进行交流,我们也可以几乎与受信任的策展人模型的实用性相匹配。这与本地隐私模型(具有较低实用程序)或基于安全的聚合(所有对用户成对需要交换消息)中的协议形成鲜明对比。我们的第二个贡献使用户能够证明其计算的正确性,而不会损害协议的效率和隐私保证。我们的验证协议依赖于标准的加密原语,例如承诺方案和零知识证明。
Learning from data owned by several parties, as in federated learning, raises challenges regarding the privacy guarantees provided to participants and the correctness of the computation in the presence of malicious parties. We tackle these challenges in the context of distributed averaging, an essential building block of federated learning algorithms. Our first contribution is a scalable protocol in which participants exchange correlated Gaussian noise along the edges of a network graph, complemented by independent noise added by each party. We analyze the differential privacy guarantees of our protocol and the impact of the graph topology under colluding malicious parties, showing that we can nearly match the utility of the trusted curator model even when each honest party communicates with only a logarithmic number of other parties chosen at random. This is in contrast with protocols in the local model of privacy (with lower utility) or based on secure aggregation (where all pairs of users need to exchange messages). Our second contribution enables users to prove the correctness of their computations without compromising the efficiency and privacy guarantees of the protocol. Our verification protocol relies on standard cryptographic primitives like commitment schemes and zero knowledge proofs.