论文标题

在生成多项式上,用于在离散估值域中分布的广义二项式系数

On the generating polynomials for the distribution of generalized binomial coefficients in discrete valuation domains

论文作者

Nguyen, Dong Quan Ngoc

论文摘要

对于带有最大理想$ \ mathfrak {m} $的离散估值域$ v $,使残基$ v/\ mathfrak {m} $是有限的,存在一系列多项式$(f_n(x)_ {n \ ge 0} $ a $ k $ k $ k $ k $ v $ v $ v $ v $ v $ v $ v $ V $ \ text {int}(v)= \ {f \ in K [x] | f(v)\ subseteq v \} $。这种多项式序列与经典的二项式多项式$(\ binom {x} {n})_ {n \ ge 0} $具有许多相似之处。在本文中,我们介绍了一个生成多项式,以说明多项式的$ v $值$ f_n(x)$ modulo的最大理想$ \ mathfrak {m mathfrak {m} $,并证明一种结果,可以准确地计算polynomials $ ge ge ge ge ge ge ge ge(x)的方法(x)残基类Modulo $ \ Mathfrak {M} $。本文中我们的主要定理可以被视为在离散估值域的背景下,Garfield和Wilf经典定理的类似物。

For a discrete valuation domain $V$ with maximal ideal $\mathfrak{m}$ such that the residue field $V/\mathfrak{m}$ is finite, there exists a sequence of polynomials $(F_n(x))_{n \ge 0}$ defined over the quotient field $K$ of $V$ that forms a basis of the $V$-module $\text{Int}(V) = \{f \in K[x] | f(V)\subseteq V\}$. This sequence of polynomials bears many resemblances to the classical binomial polynomials $(\binom{x}{n})_{n \ge 0}$. In this paper, we introduce a generating polynomial to account for the distribution of the $V$-values of the polynomials $F_n(x)$ modulo the maximal ideal $\mathfrak{m}$, and prove a result that provides a method for counting exactly how many $V$-values of the polynomials $(F_n(x))_{n \ge 0}$ fall into each of the residue classes modulo $\mathfrak{m}$. Our main theorem in this paper can be viewed as an analogue of the classical theorem of Garfield and Wilf in the context of discrete valuation domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源