论文标题

分布概括的因果框架

A causal framework for distribution generalization

论文作者

Christiansen, Rune, Pfister, Niklas, Jakobsen, Martin Emil, Gnecco, Nicola, Peters, Jonas

论文摘要

我们考虑了在测试和培训分布不同时从一组协变量$ x $中预测响应$ y $的问题。由于这种差异可能具有因果解释,因此我们考虑从结构性因果模型中的干预措施中出现的测试分布,并专注于最大程度地降低最坏情况的风险。在对协变量的任意干预下,在其直接原因上回归响应的因果回归模型保持不变,但在上述意义上并不总是最佳的。例如,对于线性模型和有限的干预措施,替代解决方案已被证明是最小值预测。我们介绍了正式的分布概括框架,该框架使我们能够在部分观察到的非线性模型中分析上述问题,以换成$ x $的直接干预措施以及通过外源变量$ a $间接进行的干预措施。它考虑到,实际上,需要从数据中识别Minimax解决方案。我们的框架使我们能够表征在哪种干预措施下,因果功能是最小的。我们证明了足够的分布泛化条件,并提出了相应的不可能结果。我们提出了一种实用的方法,即尼罗河,该方法可以在线性外推的非线性IV设置中实现分布概括。我们证明一致性并提出了经验结果。

We consider the problem of predicting a response $Y$ from a set of covariates $X$ when test and training distributions differ. Since such differences may have causal explanations, we consider test distributions that emerge from interventions in a structural causal model, and focus on minimizing the worst-case risk. Causal regression models, which regress the response on its direct causes, remain unchanged under arbitrary interventions on the covariates, but they are not always optimal in the above sense. For example, for linear models and bounded interventions, alternative solutions have been shown to be minimax prediction optimal. We introduce the formal framework of distribution generalization that allows us to analyze the above problem in partially observed nonlinear models for both direct interventions on $X$ and interventions that occur indirectly via exogenous variables $A$. It takes into account that, in practice, minimax solutions need to be identified from data. Our framework allows us to characterize under which class of interventions the causal function is minimax optimal. We prove sufficient conditions for distribution generalization and present corresponding impossibility results. We propose a practical method, NILE, that achieves distribution generalization in a nonlinear IV setting with linear extrapolation. We prove consistency and present empirical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源