论文标题

推断霍克斯网络的不确定性量化

Uncertainty Quantification for Inferring Hawkes Networks

论文作者

Wang, Haoyun, Xie, Liyan, Cuozzo, Alex, Mak, Simon, Xie, Yao

论文摘要

多元霍克斯过程通常用于在各种应用程序中建模流媒体网络事件数据。但是,从具有不确定性量化的复杂数据集中提取可靠的推断仍然是一个挑战。为此,我们开发了一个统计推理框架,以从网络数据中学习节点之间的因果关系,其中基础有向图意味着Granger因果关系。我们通过提供非反应置信度集来为网络多元霍克斯工艺的最大似然估计提供不确定性量化。主要技术是基于连续时间的浓度不平等。我们将我们的方法与以前衍生的渐近鹰工艺置信区间进行了比较,并在应用神经元连通性重建时证明了我们方法的优势。

Multivariate Hawkes processes are commonly used to model streaming networked event data in a wide variety of applications. However, it remains a challenge to extract reliable inference from complex datasets with uncertainty quantification. Aiming towards this, we develop a statistical inference framework to learn causal relationships between nodes from networked data, where the underlying directed graph implies Granger causality. We provide uncertainty quantification for the maximum likelihood estimate of the network multivariate Hawkes process by providing a non-asymptotic confidence set. The main technique is based on the concentration inequalities of continuous-time martingales. We compare our method to the previously-derived asymptotic Hawkes process confidence interval, and demonstrate the strengths of our method in an application to neuronal connectivity reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源