论文标题

MacPhail的定理重新审视

Macphail's Theorem revisited

论文作者

Pellegrino, Daniel, Silva, Janiely

论文摘要

1947年,M。S。MacPhail在$ \ ell_ {1} $中构建了一个无条件收敛但不会绝对收敛的系列。根据文献,这一结果帮助Dvoretzky和Rogers最终回答了Banach Space理论的长期存在的问题,它表明在所有无限维度Banach空间中,存在一个无条件的总结序列,这绝对是绝对可总结的。更准确地说,dvoretzky- rogers theorem断言,在每个无限二维Banach Space $ e $中都存在无条件收敛的系列$ {\ textstyle \ sum} x^{(j)} $ x^{(J)} \ vert^{^{2- \ varepsilon}} = \ infty $对于所有$ \ varepsilon> 0。适用于所有$ \ varepsilon> 0的构造。$

In 1947, M. S. Macphail constructed a series in $\ell_{1}$ that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach Space Theory, by showing that in all infinite-dimensional Banach spaces, there exists an unconditionally summable sequence that fails to be absolutely summable. More precisely, the Dvoretzky--Rogers Theorem asserts that in every infinite-dimensional Banach space $E$ there exists an unconditionally convergent series ${\textstyle\sum}x^{(j)}$ such that ${\textstyle\sum}\Vert x^{(j)}\Vert^{^{2-\varepsilon}}=\infty$ for all $\varepsilon>0.$ Their proof is non-constructive and Macphail's result for $E=\ell_{1}$ provides a constructive proof just for $\varepsilon\geq1.$ In this note we revisit Machphail's paper and present two alternative constructions that work for all $\varepsilon>0.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源