论文标题
lambert w-kink孤子的复杂立方Quintic Ginzburg-landau方程,带有内部拉曼散射
Chirped Lambert W-kink solitons of the complex cubic-quintic Ginzburg-Landau equation with intrapulse Raman scattering
论文作者
论文摘要
在本文中,通过使用Lambert W功能或欧米茄功能,获得了复杂的立方Quintic Ginzburg-Landau方程的精确明确解决方案。更重要的是,我们将它们称为兰伯特W-kink型孤子,在内部拉曼散射的影响下被生成。参数域被描述,其中这些光学孤子在随后的模型中退出。我们报告了模型系数对兰伯特W-Kink孤子振幅的影响,这使我们能够有效地控制脉搏强度,从而使它们随后的进化。同样,作为该模型的副产品,还获得了移动前部或光学冲击型孤子。我们通过微调光谱滤波或增益参数来解释控制这些前部强度的机制。据表明,与这些光学孤子相关的频率呼叫取决于波的强度,并且随着迟缓的时间接近其渐近值,波浪的强度和恒定值饱和为恒定值。
In this paper, an exact explicit solution for the complex cubic-quintic Ginzburg-Landau equation is obtained, by using Lambert W function or omega function. More pertinently, we term them as Lambert W-kink-type solitons, begotten under the influence of intrapulse Raman scattering. Parameter domains are delineated in which these optical solitons exit in the ensuing model. We report the effect of model coefficients on the amplitude of Lambert W-kink solitons, which enables us to control efficiently the pulse intensity and hence their subsequent evolution. Also, moving fronts or optical shock-type solitons are obtained as a byproduct of this model. We explicate the mechanism to control the intensity of these fronts, by fine tuning the spectral filtering or gain parameter. It is exhibited that the frequency chirp associated with these optical solitons depends on the intensity of the wave and saturates to a constant value as the retarded time approaches its asymptotic value.