论文标题
Class2simi:噪音标签学习的降噪视角
Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels
论文作者
论文摘要
近年来,用嘈杂的标签学习引起了很多关注,主流方法以举止方式。同时,成对的举止在监督公制学习和无监督的对比学习方面表现出巨大的潜力。因此,提出了一个自然的问题:以成对的方式学习会减轻标签噪声吗?为了给出一个肯定的答案,在本文中,我们提出了一个称为Class2Simi的框架:它将带有嘈杂类标签的数据点转换为带有嘈杂相似性标签的数据对,其中相似性标签表示一对是否共享类标签。通过这种转换,从理论上保证了噪声速率的降低,因此原则上更容易处理嘈杂的相似性标签。令人惊讶的是,如果首先是从嘈杂的数据点预估计的,可以从嘈杂的数据对中训练清洁类标签的DNN。 Class2SIMI在计算上是有效的,因为不仅此转换在迷你批次中,而且仅在模型预测之上的损失计算为成对方式。通过广泛的实验来验证其有效性。
Learning with noisy labels has attracted a lot of attention in recent years, where the mainstream approaches are in pointwise manners. Meanwhile, pairwise manners have shown great potential in supervised metric learning and unsupervised contrastive learning. Thus, a natural question is raised: does learning in a pairwise manner mitigate label noise? To give an affirmative answer, in this paper, we propose a framework called Class2Simi: it transforms data points with noisy class labels to data pairs with noisy similarity labels, where a similarity label denotes whether a pair shares the class label or not. Through this transformation, the reduction of the noise rate is theoretically guaranteed, and hence it is in principle easier to handle noisy similarity labels. Amazingly, DNNs that predict the clean class labels can be trained from noisy data pairs if they are first pretrained from noisy data points. Class2Simi is computationally efficient because not only this transformation is on-the-fly in mini-batches, but also it just changes loss computation on top of model prediction into a pairwise manner. Its effectiveness is verified by extensive experiments.