论文标题

支持$τ_n$ - 用对

Support $τ_n$-tilting pairs

论文作者

Zhou, Panyue, Zhu, Bin

论文摘要

我们介绍了Adachi-iyama-Reiten的支持$τ$的更高版本,这是雅各布森 - 乔根森的最大$τ_n$ - rigid对的概括。令$ \ mathcal c $为$(n+2)$ - Angulated类别,带有$ n $ -suspension functor $σ^n $和opperman-thomas-thomas cluster tilting对象。我们表明,$ \ MATHCAL C $中的相对$ n $ rigid对象进行双期培养,$τ_n$ -rigid对在$ n $ -Abelian类别中$ \ MATHCAL C/{\ MATHCAL C/{\ rm ADD}σ^n t $,相对最大$ n $ n $ rigiD $ rigid of $ \ rigig \ mathcal coptift $ \ tust $ ustiake n in tust $ rig \ tust in intut in intut intut in intut in intut intut in intut tust intut in intut intut intut in intut。我们还表明,相对$ n $ - 自我 - 垂直对象与Maximal $τ_n$ -rigid对进行了培养。这些结果将$ \ Mathcal C $的工作推广为Jacobsen-Jørgensen撰写的$ 2N $ -CALABI-YAU,而Yang-Zhu的工作则为$ n = 1 $。

We introduce the higher version of the notion of Adachi-Iyama-Reiten's support $τ$-tilting pairs, which is a generalization of maximal $τ_n$-rigid pairs in the sense of Jacobsen-Jørgensen. Let $\mathcal C$ be an $(n+2)$-angulated category with an $n$-suspension functor $Σ^n$ and an Opperman-Thomas cluster tilting object. We show that relative $n$-rigid objects in $\mathcal C$ are in bijection with $τ_n$-rigid pairs in the $n$-abelian category $\mathcal C/{\rm add}Σ^n T$, and relative maximal $n$-rigid objects in $\mathcal C$ are in bijection with support $τ_n$-tilting pairs. We also show that relative $n$-self-perpendicular objects are in bijection with maximal $τ_n$-rigid pairs. These results generalise the work for $\mathcal C$ being $2n$-Calabi-Yau by Jacobsen-Jørgensen and the work for $n=1$ by Yang-Zhu.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源