论文标题
二维渐近平面时期的非词立黑洞
Nonsingular black hole in two-dimensional asymptotically flat spacetime
论文作者
论文摘要
We study a special two-dimensional dilaton gravity with Lagrangian $\mathcal{L}=\frac{1}{2}\sqrt{-g}(ϕR+{λ^2}{\rm sech}^2ϕ)$ where $λ$ is a parameter of dimension mass.该理论描述了渐近平坦的二维间距。有趣的是,它具有用于公制的精确解决方案,$ \ d s^2 = - (c+\tanhλx)\ d t^2+\ d x^2/(c+\tanhλx)$,由$ c $参数化。对于$ c \ in(-1,1)$,该解决方案呈现事件视野,但没有奇异性。由于解决方案中出现的度量组件的扭结曲线,我们将指标描述为{\ IT引力域壁}所描述的时空,壁只是事件范围,并分离了两个渐近的minkowskian spaceTimes。通过坐标扩展研究了这种对象的全局因果结构,并计算了热力学量。仅当$ c \ in(-1,0] $)是熵和能量非负时。
We study a special two-dimensional dilaton gravity with Lagrangian $\mathcal{L}=\frac{1}{2}\sqrt{-g}(ϕR+{λ^2}{\rm sech}^2ϕ)$ where $λ$ is a parameter of dimension mass. This theory describes two-dimensional spacetimes that are asymptotically flat. Very interestingly, it has an exact solution for the metric, $\d s^2=-(c+\tanh λx)\d t^2+ \d x^2/(c+\tanh λ x)$, parametrized by $c$. For $c\in(-1,1)$, the solution presents an event horizon but no singularity. Because of the kink profile for the metric components appearing in the solution, we refer to the spacetime described by the metric as a {\it gravitational domain wall} with the wall simply being the event horizon and separating two asymptotically Minkowskian spacetimes. The global causal structure for such an object is studied via coordinate extension and the thermodynamical quantities are computed. Only when $c\in(-1,0]$ are the entropy and energy non-negative.