论文标题
地球霍夫:3D重建而无需切断拐角
Geodesic-HOF: 3D Reconstruction Without Cutting Corners
论文作者
论文摘要
单视3D对象重建是计算机视觉中一个具有挑战性的基本问题,这主要是由于自然界对象的形态多样性。特别是,高曲率区域并非总是通过仅使用基于集的损失功能训练的方法来有效捕获的,从而导致重建短路或切割拐角。特别是,高曲率区域并非总是通过仅使用基于集的损失功能训练的方法来有效捕获的,从而导致重建短路或切割拐角。为了解决这个问题,我们建议从规范采样域学习一个图像条件的映射函数到欧几里得距离等于对象上的大地距离的高维空间。映射样品的前三个维度对应于其3D坐标。额外的举起的组件包含有关基础大地测量结构的信息。我们的结果表明,与单独使用点云重建相比,利用这些学到的抬高坐标可以产生更好的性能来估计表面正常和产生表面。此外,我们发现,这个学到的大地嵌入空间为无监督对象分解等应用提供了有用的信息。
Single-view 3D object reconstruction is a challenging fundamental problem in computer vision, largely due to the morphological diversity of objects in the natural world. In particular, high curvature regions are not always captured effectively by methods trained using only set-based loss functions, resulting in reconstructions short-circuiting the surface or cutting corners. In particular, high curvature regions are not always captured effectively by methods trained using only set-based loss functions, resulting in reconstructions short-circuiting the surface or cutting corners. To address this issue, we propose learning an image-conditioned mapping function from a canonical sampling domain to a high dimensional space where the Euclidean distance is equal to the geodesic distance on the object. The first three dimensions of a mapped sample correspond to its 3D coordinates. The additional lifted components contain information about the underlying geodesic structure. Our results show that taking advantage of these learned lifted coordinates yields better performance for estimating surface normals and generating surfaces than using point cloud reconstructions alone. Further, we find that this learned geodesic embedding space provides useful information for applications such as unsupervised object decomposition.