论文标题
随机延迟的振荡系统中跳跃模式
Mode hopping in oscillating systems with stochastic delays
论文作者
论文摘要
我们研究具有脉搏延迟反馈的嘈杂振荡器,理论上和电子实验实现。没有噪声,该系统具有多个稳定的周期性制度。我们考虑两种类型的噪声:i)作用在振荡器状态变量上的相位噪声,ii)耦合延迟的随机波动。对于两种类型的随机扰动,确定性方案之间的系统跳动,但对于不同类型的噪声显示出截然不同的缩放属性。传统相位噪声的鲁棒性随耦合强度而增加。但是,对于耦合延迟的随机变化,寿命随耦合强度而呈指数降低。我们在线性化模型中为这些缩放属性提供了分析解释。因此,我们的发现表明,系统对随机扰动的鲁棒性在很大程度上取决于这些扰动的性质。
We study a noisy oscillator with pulse delayed feedback, theoretically and in an electronic experimental implementation. Without noise, this system has multiple stable periodic regimes. We consider two types of noise: i) phase noise acting on the oscillator state variable and ii) stochastic fluctuations of the coupling delay. For both types of stochastic perturbations the system hops between the deterministic regimes, but it shows dramatically different scaling properties for different types of noise. The robustness to conventional phase noise increases with coupling strength. However for stochastic variations in the coupling delay, the lifetimes decrease exponentially with the coupling strength. We provide an analytic explanation for these scaling properties in a linearised model. Our findings thus indicate that the robustness of a system to stochastic perturbations strongly depends on the nature of these perturbations.