论文标题
Nef反典型除数的射影平坦和均匀的品种的均匀度
Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor
论文作者
论文摘要
我们给出了在KLT空间上反身捆的项目进行的标准,该标准是由光滑基因座基本组的投影代表诱导的。然后,应用此标准以通过$ \ Mathbb {q} $ - Chern类(IN)等量和合适的稳定性条件来给出投影空间和Abelian品种的有限商的特征。这种稳定性条件是根据结构捆的切线捆的自然定义扩展而制定的。我们进一步研究了满足这种稳定性条件的案例,将其与k的性和相关概念进行了比较。
We give a criterion for the projectivisation of a reflexive sheaf on a klt space to be induced by a projective representation of the fundamental group of the smooth locus. This criterion is then applied to give a characterisation of finite quotients of projective spaces and Abelian varieties by $\mathbb{Q}$-Chern class (in)equalities and a suitable stability condition. This stability condition is formulated in terms of a naturally defined extension of the tangent sheaf by the structure sheaf. We further examine cases in which this stability condition is satisfied, comparing it to K-semistability and related notions.