论文标题
可用状态和三重不确定性关系的最佳近似
Optimal approximations of available states and a triple uncertainty relation
论文作者
论文摘要
我们研究了相对于一组可用状态的量子状态的最佳凸近似。通过等距转换,我们与三重不确定性平等关系一起介绍了一般数学模型及其解决方案。同时,我们显示了分解量子混合状态的简洁不平等标准。新结果包括以前的特殊情况。我们的模型和方法可以应用于在高维和多部分方案中解决类似问题
We investigate the optimal convex approximation of the quantum state with respect to a set of available states. By isometric transformation, we have presented the general mathematical model and its solutions together with a triple uncertainty equality relation. Meanwhile, we show a concise inequality criterion for decomposing qubit mixed states. The new results include previous ones as special cases. Our model and method may be applied to solve similar problems in high-dimensional and multipartite scenarios