论文标题

硅碳化物辅助的磁性阶段共存良好的ti $ _3 $ sic $ _2 $ teached mxene

Silicon carbide-assisted co-existence of magnetic phases in well-optimized Ti$_3$SiC$_2$-etched MXene

论文作者

Noor, Qandeel, Zahra, Syedah Afsheen, Rizwan, Syed

论文摘要

在这里,我们报告了第一次成功的剥落,从二维ti $ _3 $ c $ _2 $ _x $ _x $ mxene中通过选择性蚀刻硅硅碳化硅(Ti $ _3 $ sic $ _2 $)max。通过X射线衍射技术确定,通过将所有(00l)峰转移到较低角度以及C级别参数的增加,以详细介绍材料结构,从而证实了MXENE的成功蚀刻和去角质。发现多层MXENE的C-tatch参数为19.34Å,在分层过程后增加到26.22Å,表明TMA+离子在MXENE片片中成功插入。扫描电子显微镜(SEM)图像显示了2D分层结构的形成。使用超导量子干扰装置(Squid:Quantum Design)测量蚀刻MXENE样品的磁测量。磁化与磁性(M-H)曲线清楚地表明,由于存在MXENE结构中存在硅碳化物(SIC),因此低温和室温下的铁磁性磁滞回路以及室温下的磁性磁滞环,以及存在小磁管相。通过XRD和拉曼光谱证实了SIC相的存在,该光谱显示了2D MXENE结构内SIC的尖峰和振动模式。目前的工作表明了铁磁和磁磁相的共存,使其适合将来的旋转器设备的2D材料。

Here, we report the first successful exfoliation of two-dimensional Ti$_3$C$_2$T$_x$ MXene through selective etching of silicon from titanium silicon carbide (Ti$_3$SiC$_2$) MAX. The successful etching and exfoliation of MXene is confirmed through the shifting of all (00l) peaks to lower angles along with the increase in c-lattice parameter as determined by X-ray diffraction technique to detail the material structure. The c-lattice parameter of multilayered MXene was found to be 19.34Å which was increased to 26.22 Å after delamination process indicating the successful intercalation of TMA+ ions within the MXene Sheets. The scanning electron microscopy (SEM) images show the formation of 2D layered structure. The magnetic measurement of the etched MXene sample was measured using superconducting quantum interference device (SQUID: Quantum Design). The magnetization vs magnetic (M-H) curves clearly indicate the ferromagnetic-dominant hysteresis loops at low-temperature as well as at room-temperature along with the presence of small diamagnetic phase due to the presence of silicon carbide (SiC) present in MXene structure. The presence of SiC phase is confirmed through XRD and Raman spectra that show the sharp peaks and vibrational modes of SiC within 2D MXene structure. The present work shows the co-existence of ferromagnetic and diamagnetic phases making it suitable 2D material for future spintronics devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源