论文标题

通过机器学习增强力场校准

Enhanced force-field calibration via machine learning

论文作者

Argun, Aykut, Thalheim, Tobias, Bo, Stefano, Cichos, Frank, Volpe, Giovanni

论文摘要

微观力场对布朗颗粒运动的影响在包括软物质,生物物理学和活性物质在内的广泛领域中起着基本作用。通常,这些力场的实验校准取决于对这些布朗颗粒的轨迹的分析。但是,这种分析并不总是直接的,尤其是如果潜在的力场是非保守或时间变化的,则将系统驱逐出热力学平衡。在这里,我们引入了一个工具箱,通过使用机器学习(即复发性神经网络)分析布朗粒子的轨迹来校准微观力场。我们证明,如果可用数据受到限制,则表征由谐波电位产生的力场时,这种机器学习方法的表现优于标准方法。更重要的是,它提供了一种工具来校准没有标准方法的情况,例如非保守和时间变化的力场。为了使其他用户很容易获得此方法,我们提供了一个名为DeepCalib的Python软件包,可以轻松地为特定应用程序进行个性化和优化。

The influence of microscopic force fields on the motion of Brownian particles plays a fundamental role in a broad range of fields, including soft matter, biophysics, and active matter. Often, the experimental calibration of these force fields relies on the analysis of the trajectories of these Brownian particles. However, such an analysis is not always straightforward, especially if the underlying force fields are non-conservative or time-varying, driving the system out of thermodynamic equilibrium. Here, we introduce a toolbox to calibrate microscopic force fields by analyzing the trajectories of a Brownian particle using machine learning, namely recurrent neural networks. We demonstrate that this machine-learning approach outperforms standard methods when characterizing the force fields generated by harmonic potentials if the available data are limited. More importantly, it provides a tool to calibrate force fields in situations for which there are no standard methods, such as non-conservative and time-varying force fields. In order to make this method readily available for other users, we provide a Python software package named DeepCalib, which can be easily personalized and optimized for specific applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源