论文标题
瓦斯恒星回归
Wasserstein Regression
论文作者
论文摘要
对矢量空间中不存在的随机物体样品的分析正在统计中越来越关注。此类对象数据的一类重要类别是实际线上定义的单变量概率度量。采用Wasserstein指标,我们为此类数据开发了一类回归模型,其中随机分布用作预测因子,并且响应也是分布或标量。为了定义这种回归模型,我们利用了wasserstein指标的随机度量空间的切线束的几何形状,用于将分布映射到切线空间。所提出的分布到分布回归模型在功能数据分析中为欧几里得数据和功能到功能回归的多元线性回归提供了扩展。在模拟中,它的性能要比替代转换方法更好,在替代转换方法中,一个人通过对数刻克密度转换将分布映射到希尔伯特空间,然后应用传统的功能回归。我们为回归运算符和预测分布的估计器得出渐近的收敛速率,还研究了分布值时间序列的自回旋模型的扩展。提出的方法用有关人类死亡率和分配时间序列的房价的数据进行了说明。
The analysis of samples of random objects that do not lie in a vector space is gaining increasing attention in statistics. An important class of such object data is univariate probability measures defined on the real line. Adopting the Wasserstein metric, we develop a class of regression models for such data, where random distributions serve as predictors and the responses are either also distributions or scalars. To define this regression model, we utilize the geometry of tangent bundles of the space of random measures endowed with the Wasserstein metric for mapping distributions to tangent spaces. The proposed distribution-to-distribution regression model provides an extension of multivariate linear regression for Euclidean data and function-to-function regression for Hilbert space valued data in functional data analysis. In simulations, it performs better than an alternative transformation approach where one maps distributions to a Hilbert space through the log quantile density transformation and then applies traditional functional regression. We derive asymptotic rates of convergence for the estimator of the regression operator and for predicted distributions and also study an extension to autoregressive models for distribution-valued time series. The proposed methods are illustrated with data on human mortality and distributional time series of house prices.