论文标题

小型数据解决方案的大量时间行为在整个空间

Large time behavior of small data solutions to the Vlasov-Navier-Stokes system on the whole space

论文作者

Han-Kwan, Daniel

论文摘要

我们研究了$ \ r^3 \ times \ r^3 $的小型数据解决方案的较大时间行为。我们证明,动力学分布函数集中于$ 0 $支撑的Dirac质量,而流体速度均匀均以$ 0 $,均以多项式速率均以$ 0 $。证明是基于两个步骤的,遵循\ cite {hkmm}中规定的一般策略:(1)假设对动力学密度的统一控制,系统的能量会以多项式速率衰减,(2)引导程序参数允许获得这样的控制。最后一步需要对所谓的布林克曼力量的结构有充分的了解,这是从与Vlasov-Navier-Stokes System相关的耗散(以及更高版本)的新身份家族中进行的。

We study the large time behavior of small data solutions to the Vlasov-Navier-Stokes system on $\R^3 \times \R^3$. We prove that the kinetic distribution function concentrates in velocity to a Dirac mass supported at $0$, while the fluid velocity homogenizes to $0$, both at a polynomial rate. The proof is based on two steps, following the general strategy laid out in \cite{HKMM}: (1) the energy of the system decays with polynomial rate, assuming a uniform control of the kinetic density, (2) a bootstrap argument allows to obtain such a control. This last step requires a fine understanding of the structure of the so-called Brinkman force, which follows from a family of new identities for the dissipation (and higher versions of it) associated to the Vlasov-Navier-Stokes system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源