论文标题
细粒度的情感控制文字生成
Fine-grained Sentiment Controlled Text Generation
论文作者
论文摘要
受控文本生成技术旨在在保留属性独立内容时调节特定属性(例如情感)。最先进的方法将指定属性作为结构化或离散表示形式模型,同时使内容表示独立于其以实现更好的控制。但是,将文本表示形式分为单独的潜在空间忽略了内容和属性之间的复杂依赖性,从而产生了构造不良而不是那么有意义的句子。此外,这种方法无法对属性更改程度提供更优质的控制。为了解决受控文本生成的这些问题,在本文中,我们提出了De-vae,这是一个层次结构框架,它捕获了既丰富信息纠缠的表示形式又属于不同层次结构中的特定特定的分离表示。 De-vae通过学习合适的无损转换网络从解开的情感空间到所需的纠缠表示,可以更好地控制情感作为属性。通过在分离表示的单个维度上的特征监督,De-Vae将情感的变化映射到连续空间,这有助于将情感从正面到负面到负面,反之亦然。关于三个公开评论数据集的详细实验表明,De-Vae的优越性超过了最近的最新方法。
Controlled text generation techniques aim to regulate specific attributes (e.g. sentiment) while preserving the attribute independent content. The state-of-the-art approaches model the specified attribute as a structured or discrete representation while making the content representation independent of it to achieve a better control. However, disentangling the text representation into separate latent spaces overlooks complex dependencies between content and attribute, leading to generation of poorly constructed and not so meaningful sentences. Moreover, such an approach fails to provide a finer control on the degree of attribute change. To address these problems of controlled text generation, in this paper, we propose DE-VAE, a hierarchical framework which captures both information enriched entangled representation and attribute specific disentangled representation in different hierarchies. DE-VAE achieves better control of sentiment as an attribute while preserving the content by learning a suitable lossless transformation network from the disentangled sentiment space to the desired entangled representation. Through feature supervision on a single dimension of the disentangled representation, DE-VAE maps the variation of sentiment to a continuous space which helps in smoothly regulating sentiment from positive to negative and vice versa. Detailed experiments on three publicly available review datasets show the superiority of DE-VAE over recent state-of-the-art approaches.