论文标题

通过部分组代数的同源和同源学

Homology and cohomology via the partial group algebra

论文作者

Alves, Marcelo Muniz, Dokuchaev, Mikhailo, Kochloukova, Dessislava H.

论文摘要

我们通过局部群体代数$ \ mathbb {k} _ {par} g $从环理论的角度研究部分同源性和共同体。特别是,我们将组$ g $的部分同源性和共同体与不可约(不可约合的)$ \ mathbb {k} _ {par} g $ - 模块与普通同源性和$ g $的普通同源性和同胞组中的系数联系起来。此外,我们比较标准的共同学维度$ cd_ {\ \ \ \ \ \ \ \ \ \ \ \ {k}}(g)$(在字段$ \ mathbb {k} $上,与部分共同体学维度$ cd_ {\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \米\ \ Mathbb {k}}^{par}(g)\ geq cd_ {\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)$,并且对于$ g = \ mathbb {z} $有相等的态度。

We study partial homology and cohomology from ring theoretic point of view via the partial group algebra $\mathbb{K}_{par}G$. In particular, we link the partial homology and cohomology of a group $G$ with coefficients in an irreducible (resp. indecomposable) $\mathbb{K}_{par}G$-module with the ordinary homology and cohomology groups of $G$ with in general non-trivial coefficients. Furthermore, we compare the standard cohomological dimension $cd_{ \ \mathbb{K}}(G)$ (over a field $\mathbb{K}$) with the partial cohomological dimension $cd_{ \ \mathbb{K}}^{par}(G)$ (over $\mathbb{K}$) and show that $cd_{ \ \mathbb{K}}^{par}(G) \geq cd_{ \ \mathbb{K}}(G)$ and that there is equality for $G = \mathbb{Z}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源