论文标题
空间等离子体中湍流和质子微稳定性的相互作用
Interplay of Turbulence and Proton-Microinstability Growth in Space Plasmas
论文作者
论文摘要
许多先前的研究表明,随着质子β的增加,观察到质子温度各向异性值的范围较窄。这种效果通常归因于动力学微插入性的作用,因为观察数据的分布与β-抗障碍平面中恒定不稳定性生长速率的轮廓一致。然而,线性弗拉索夫的不稳定性理论假定扰动的统一背景。线性微观发明理论的既定成功表明,极端温度各向异性区域中的条件可能会统一长时间,以便不稳定性有机会成长至足够的振幅。另一方面,湍流本质上是不均匀的和不线的。在湍流等离子体中产生的薄电流板和其他连贯的结构可能会足够快地破坏均匀性。因此,是否存在间歇性和连贯的结构的存在是偏爱还是不融合不稳定性,这并不明显。为了解决这个问题,我们检查了与质子温度扭曲驱动的微插入性和湍流等离子体中局部非线性时间尺度相关的生长速率的统计分布。线性增长率平均比本地非线性速率少得多。但是,在温度各向异性的极端值区域,质子温度各向异性平行β平面的“边缘”附近,不稳定性生长速率比湍流时间尺度可比性或更快。这些结果为为什么线性理论似乎在限制各向异性和等离子体β的等离子体偏移方面起作用。
Numerous prior studies have shown that as proton beta increases, a narrower range of proton temperature anisotropy values is observed. This effect has often been ascribed to the actions of kinetic microinstabilities because the distribution of observational data aligns with contours of constant instability growth rates in the beta-anisotropy plane. However, the linear Vlasov theory of instabilities assumes a uniform background in which perturbations grow. The established success of linear-microinstability theories suggests that the conditions in regions of extreme temperature anisotropy may remain uniform for a long enough time so that the instabilities have the chance to grow to sufficient amplitude. Turbulence, on the other hand, is intrinsically non-uniform and non-linear. Thin current sheets and other coherent structures generated in a turbulent plasma, may destroy the uniformity fast enough. It is therefore not a-priori obvious whether the presence of intermittency and coherent structures favors or disfavors instabilities. To address this question, we examined the statistical distribution of growth rates associated with proton temperature-anisotropy driven microinstabilities and local nonlinear time scales in turbulent plasmas. Linear growth rates are, on average, substantially less than the local nonlinear rates. However, at the regions of extreme values of temperature anisotropy, near the "edges" of the populated part of the proton temperature anisotropy-parallel beta plane, the instability growth rates are comparable or faster than the turbulence time scales. These results provide a possible answer to the question as to why the linear theory appears to work in limiting plasma excursions in anisotropy and plasma beta.