论文标题

抛物线操作员的平方根

The square root of a parabolic operator

论文作者

Ouhabaz, El Maati

论文摘要

令l(t)= -div(a(x,t)$ \ nabla $ x)t $ \ in $(0,$τ$)是一个均匀的椭圆运算符,在r d和$ \ partial $ = $ = $ = $ \ partial $ $ $ $ $ \ partial $ t的域上具有边界条件。定义抛物线运算符l = $ \ partial $ + l在L 2(0,$τ$,l 2($ω$))的(lu)(t)(t):= $ \ partial $ u(t)$ \ partial $ \ partial $ t + l(t)u(t)u(t)u(t)。对于$ω$的边界,我们假设几乎没有规律性,并假设系数A(x,t)可以在x中可测量,则可以在x和分段的c $α$中t t to $α$> 1 2。 $ \ nabla $ x u l 2(0,$τ$,l 2($ω$)) + u H 1 2(0,$τ$,l 2($ω$)) + $τ$ 0 u(t)2 l 2($ω$)dt t t t 1/2。我们还证明了这一结果的p-perversions。关键字:椭圆形和抛物线算子,加藤方形根特性,最大规律性,全体形态功能演算,非自主进化方程。

Let L(t) = --div (A(x, t)$\nabla$ x) for t $\in$ (0, $τ$) be a uniformly elliptic operator with boundary conditions on a domain $Ω$ of R d and $\partial$ = $\partial$ $\partial$t. Define the parabolic operator L = $\partial$ + L on L 2 (0, $τ$, L 2 ($Ω$)) by (Lu)(t) := $\partial$u(t) $\partial$t + L(t)u(t). We assume a very little of regularity for the boundary of $Ω$ and assume that the coefficients A(x, t) are measurable in x and piecewise C $α$ in t for some $α$ > 1 2. We prove the Kato square root property for $\sqrt$ L and the estimate $\sqrt$ L u L 2 (0,$τ$,L 2 ($Ω$)) $\approx$ $\nabla$ x u L 2 (0,$τ$,L 2 ($Ω$)) + u H 1 2 (0,$τ$,L 2 ($Ω$)) + $τ$ 0 u(t) 2 L 2 ($Ω$) dt t 1/2. We also prove L p-versions of this result. Keywords: elliptic and parabolic operators, the Kato square root property, maximal regularity, the holomorphic functional calculus, non-autonomous evolution equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源