论文标题
许多互动世界的正常近似值中的最佳界限
Optimal Bounds in Normal Approximation for Many Interacting Worlds
论文作者
论文摘要
在本文中,我们使用Stein的方法在Kolmogorov和Wasserstein距离中获得最佳界限,以正常的近似值,以实现Hall,Deckert和Wiseman提出的许多相互作用的谐波振荡的基态的经验分布。 Rev. X.(2014)]。我们在Wasserstein距离上的界限解决了McKeague和Levin的猜想[Ann。应用。概率。 (2016)]。
In this paper, we use Stein's method to obtain optimal bounds, both in Kolmogorov and in Wasserstein distance, in the normal approximation for the empirical distribution of the ground state of a many-interacting-worlds harmonic oscillator proposed by Hall, Deckert, and Wiseman [Phys. Rev. X. (2014)]. Our bounds on the Wasserstein distance solve a conjecture of McKeague and Levin [Ann. Appl. Probab. (2016)].