论文标题

异步多代理主动搜索

Asynchronous Multi Agent Active Search

论文作者

Ghods, Ramina, Banerjee, Arundhati, Schneider, Jeff

论文摘要

主动搜索是指通过积极做出数据收集决策在未知环境中有效定位目标的问题,并具有许多应用程序,包括使用空中和/或地面机器人(代理商)检测气体泄漏,辐射源或人类幸存者。现有的主动搜索方法通常仅适用于单个代理,或者如果它们扩展到多代理,则需要一个中央控制系统来协调所有代理的动作。但是,这种控制系统在机器人技术应用中通常是不切实际的。在本文中,我们提出了两种称为SPAT的不同的主动搜索算法(稀疏平行的异步汤普森采样)和LATSI(Laplace Thompson带有信息增益),使多个代理可以独立地做出数据收集决策而无需中央协调。在整个过程中,我们认为目标占环境周围的稀疏,以与压缩感应假设及其在现实世界中的适用性保持一致。此外,虽然最常见的搜索算法假定代理可以感觉到整个环境(例如压缩感应)或意义上的点(例如,贝叶斯优化),但我们做出了一个现实的假设,即每个代理只能一次性地感知一个连续的空间区域。我们提供模拟结果以及理论分析,以证明我们提出的算法的功效。

Active search refers to the problem of efficiently locating targets in an unknown environment by actively making data-collection decisions, and has many applications including detecting gas leaks, radiation sources or human survivors of disasters using aerial and/or ground robots (agents). Existing active search methods are in general only amenable to a single agent, or if they extend to multi agent they require a central control system to coordinate the actions of all agents. However, such control systems are often impractical in robotics applications. In this paper, we propose two distinct active search algorithms called SPATS (Sparse Parallel Asynchronous Thompson Sampling) and LATSI (LAplace Thompson Sampling with Information gain) that allow for multiple agents to independently make data-collection decisions without a central coordinator. Throughout we consider that targets are sparsely located around the environment in keeping with compressive sensing assumptions and its applicability in real world scenarios. Additionally, while most common search algorithms assume that agents can sense the entire environment (e.g. compressive sensing) or sense point-wise (e.g. Bayesian Optimization) at all times, we make a realistic assumption that each agent can only sense a contiguous region of space at a time. We provide simulation results as well as theoretical analysis to demonstrate the efficacy of our proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源