论文标题

量子神经网络的层次学习

Layerwise learning for quantum neural networks

论文作者

Skolik, Andrea, McClean, Jarrod R., Mohseni, Masoud, van der Smagt, Patrick, Leib, Martin

论文摘要

随着对量子设备近期应用的量子电路学习的关注,结合了参数化量子电路的成本功能景观所带来的独特挑战,有效训练的策略变得越来越重要。为了改善其中一些挑战,我们研究了用于参数化量子电路的层学习策略。在优化期间,电路深度逐渐生长,并且在每个训练步骤中仅更新参数子集。我们表明,在考虑采样噪声时,此策略可以帮助避免由于电路的深度低,一步一步训练的参数数量少,并且与训练完整电路相比,误差表面贫瘠的问题。这些属性使我们的算法更可取,可在嘈杂的中间尺度量子设备上执行。我们在手写数字上展示了关于图像分类任务的方法,并表明,与训练相同大小的训练量子电路相比,Layswise学习的平均概括误差降低了8%。此外,与训练完整电路相比,达到较低测试错误的运行百分比高达40%,这很容易在训练过程中爬到高原上。

With the increased focus on quantum circuit learning for near-term applications on quantum devices, in conjunction with unique challenges presented by cost function landscapes of parametrized quantum circuits, strategies for effective training are becoming increasingly important. In order to ameliorate some of these challenges, we investigate a layerwise learning strategy for parametrized quantum circuits. The circuit depth is incrementally grown during optimization, and only subsets of parameters are updated in each training step. We show that when considering sampling noise, this strategy can help avoid the problem of barren plateaus of the error surface due to the low depth of circuits, low number of parameters trained in one step, and larger magnitude of gradients compared to training the full circuit. These properties make our algorithm preferable for execution on noisy intermediate-scale quantum devices. We demonstrate our approach on an image-classification task on handwritten digits, and show that layerwise learning attains an 8% lower generalization error on average in comparison to standard learning schemes for training quantum circuits of the same size. Additionally, the percentage of runs that reach lower test errors is up to 40% larger compared to training the full circuit, which is susceptible to creeping onto a plateau during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源