论文标题
Brin-Higman-Thompson组的单词问题
The word problem of the Brin-Higman-Thompson groups
论文作者
论文摘要
我们表明,Brin-higman-Thompson组的单词问题$ n g_ {k,1} $ is {\ sf conp} -complete for All $ n \ ge 2 $和所有$ k \ ge 2 $。为此,我们证明$ n g_ {k,1} $是有限生成的,并且$ n g_ {k,1} $包含一个可以代表生物电路的$ 2 g_ {2,1} $的子组。 我们还表明,对于所有$ n \ ge 1 $和$ k \ ge 2 $:\如果$ \,k = 1 +(k-1)\,n \,$,对于某些$ n \ ge 1 $,然后$ n g_ {k,1} \ le n g_ g_ {k {k,1} $。特别是,$ n g_ {k,1} \ le n g_ {2,1} $ for All $ k \ ge 2 $。
We show that the word problem of the Brin-Higman-Thompson group $n G_{k,1}$ is {\sf coNP}-complete for all $n \ge 2$ and all $k \ge 2$. For this we prove that $n G_{k,1}$ is finitely generated, and that $n G_{k,1}$ contains a subgroup of $2 G_{2,1}$ that can represent bijective circuits. We also show that for all $n \ge 1$ and $k \ge 2$: \ If $\,K = 1 + (k-1)\,N\,$ for some $N \ge 1$, then $n G_{K,1} \le n G_{k,1}$. In particular, $n G_{K,1} \le n G_{2,1}$ for all $K \ge 2$.