论文标题

E2GC:深神经网络中的节能小组卷积

E2GC: Energy-efficient Group Convolution in Deep Neural Networks

论文作者

Jha, Nandan Kumar, Saini, Rajat, Nag, Subhrajit, Mittal, Sparsh

论文摘要

选择组卷积(GCONV)的组($ g $)数量以以计算和参数有效方式提高深神经网络(DNNS)的预测性能。但是,我们表明,幼稚的$ g $ GCONV选择会在计算复杂性和数据重用程度之间产生不平衡,从而导致DNNS的次优效率。我们设计了一个最佳的组尺寸模型,该模型可以在计算成本和数据移动成本之间保持平衡,从而优化了DNN的能源效率。根据该模型的见解,我们提出了一个“节能组卷积”(E2GC)模块,在该模块中,与GCONV的先前实现不同,组大小($ g $)保持不变。此外,为了证明E2GC模块的功效,我们将此模块纳入了Mobilenet-V1和Resnext-50的设计中,并在两个GPU,P100和P4000上执行实验。我们表明,在可比的计算复杂性下,具有恒定组大小(E2GC)的DNN比具有固定数量的组(F $ G $ GC)的DNN更节能。例如,在P100 GPU上,当E2GC模块在两个DNN中替换F $ G $ GC模块时,Mobilenet-V1和Resnext-50的能源效率分别增加了10.8%和4.73%。此外,通过我们对Imagenet-1K和Food-101图像分类数据集进行广泛的实验,我们表明E2GC模块可以在DNN的概括能力和代表力之间进行权衡。因此,可以通过选择适当的$ g $来优化DNN的预测性能。代码和训练有素的模型可在https://github.com/iithcandle/e2gc-release上找到。

The number of groups ($g$) in group convolution (GConv) is selected to boost the predictive performance of deep neural networks (DNNs) in a compute and parameter efficient manner. However, we show that naive selection of $g$ in GConv creates an imbalance between the computational complexity and degree of data reuse, which leads to suboptimal energy efficiency in DNNs. We devise an optimum group size model, which enables a balance between computational cost and data movement cost, thus, optimize the energy-efficiency of DNNs. Based on the insights from this model, we propose an "energy-efficient group convolution" (E2GC) module where, unlike the previous implementations of GConv, the group size ($G$) remains constant. Further, to demonstrate the efficacy of the E2GC module, we incorporate this module in the design of MobileNet-V1 and ResNeXt-50 and perform experiments on two GPUs, P100 and P4000. We show that, at comparable computational complexity, DNNs with constant group size (E2GC) are more energy-efficient than DNNs with a fixed number of groups (F$g$GC). For example, on P100 GPU, the energy-efficiency of MobileNet-V1 and ResNeXt-50 is increased by 10.8% and 4.73% (respectively) when E2GC modules substitute the F$g$GC modules in both the DNNs. Furthermore, through our extensive experimentation with ImageNet-1K and Food-101 image classification datasets, we show that the E2GC module enables a trade-off between generalization ability and representational power of DNN. Thus, the predictive performance of DNNs can be optimized by selecting an appropriate $G$. The code and trained models are available at https://github.com/iithcandle/E2GC-release.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源