论文标题
非线性晶格中波动流体动力学的微观理论
Microscopic theory of the fluctuating hydrodynamics in nonlinear lattices
论文作者
论文摘要
波动流体动力学的理论一直是分析非线性晶格中宏观行为的重要工具。然而,尽管取得了实际的成功,但其微观推导仍然不完整。在这项工作中,我们使用粗粒和投影技术提供了波动流体动力学的微观推导。合奏的等效性被证明是至关重要的。裸露运输系数的绿色kubo(GK)以数字计算形式呈现。我们的数值模拟表明,在GK公式(如公式)框架内的无限晶格中存在足够大但有限的粗粒长度。这表明每个物理系统都存在裸露的传输系数。
The theory of fluctuating hydrodynamics has been an important tool for analyzing macroscopic behavior in nonlinear lattices. However, despite its practical success, its microscopic derivation is still incomplete. In this work, we provide the microscopic derivation of fluctuating hydrodynamics, using the coarse-graining and projection technique; the equivalence of ensembles turns out to be critical. The Green-Kubo (GK) like formula for the bare transport coefficients is presented in a numerically computable form. Our numerical simulations show that the bare transport coefficients exist for a sufficiently large but finite coarse-graining length in the infinite lattice within the framework of the GK like formula. This demonstrates that the bare transport coefficients uniquely exist for each physical system.