论文标题

空间图作为平面图和辫子的连接总和

Spatial graph as connected sum of a planar graph and a braid

论文作者

Bardakov, Valeriy G., Kawauchi, Akio

论文摘要

在本文中,我们表明每个有限的空间图都是平面图的连接总和,即森林,即有限数量的树木和缠结的脱节结合。 结果,我们会发现任何有限的空间图都是平面图和编织的连接总和。使用这些分解,不难找到一组发电机和定义关系的基本组成组,以3个空间图$ \ mathbb {r}^3 $中的空间图的基本组合。

In this paper we show that every finite spatial graph is a connected sum of a planar graph, which is a forest, i.e. disjoint union of finite number of trees and a tangle. As a consequence we get that any finite spatial graph is a connected sum of a planar graph and a braid. Using these decompositions it is not difficult to find a set of generators and defining relations for the fundamental group of compliment of a spatial graph in 3-space $\mathbb{R}^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源