论文标题
空间图作为平面图和辫子的连接总和
Spatial graph as connected sum of a planar graph and a braid
论文作者
论文摘要
在本文中,我们表明每个有限的空间图都是平面图的连接总和,即森林,即有限数量的树木和缠结的脱节结合。 结果,我们会发现任何有限的空间图都是平面图和编织的连接总和。使用这些分解,不难找到一组发电机和定义关系的基本组成组,以3个空间图$ \ mathbb {r}^3 $中的空间图的基本组合。
In this paper we show that every finite spatial graph is a connected sum of a planar graph, which is a forest, i.e. disjoint union of finite number of trees and a tangle. As a consequence we get that any finite spatial graph is a connected sum of a planar graph and a braid. Using these decompositions it is not difficult to find a set of generators and defining relations for the fundamental group of compliment of a spatial graph in 3-space $\mathbb{R}^3$.