论文标题

银河动力学在塑造银河系中巨型分子云的物理特性中的作用

The role of galactic dynamics in shaping the physical properties of giant molecular clouds in Milky Way-like galaxies

论文作者

Jeffreson, Sarah M. R., Kruijssen, J. M. Diederik, Keller, Benjamin W., Chevance, Mélanie, Glover, Simon C. O.

论文摘要

我们研究了大规模银河系环境在将巨型分子云设置在银河系状星系中的特性中的作用。我们使用移动网格流体动力学代码进行了三个类似银河系的光盘的高分辨率模拟,得出了$ \ sim 80,000 $巨型分子云和$ \ sim 55,000 $ hi clouds的统计样本。我们说明了超新星和HII区域的气体,动量和热能注入,恒星风的质量注射以及氢,碳和氧气的非平衡化学性质。通过改变外部重力电位,我们探测了横向轨道角速度,重力稳定性,中平面压力和银河旋转曲线梯度的数量级的银河系动力环境。相对于环境星际介质,模拟的分子云是高度过度密度($ \ sim 100 \ times $),并且相对于环境星际介质而言过度压力($ \ sim 25 \ times $)。它们的烧伤和星形形成的特性与银河中部平面的动力学分离,因此KPC尺度的恒星形成速率表面密度仅与银河中部平面单位面积的分子云数量仅有关。尽管如此,云表现出清晰的,统计学上的旋转特性与银河剪切和重力自由落体速率的相关性。我们发现银河旋转和重力不稳定性会影响它们的伸长,角动量和切向速度分散。 HI云的较低压力和密度允许更大范围的显着动态相关性,反映了分子云的旋转特性,同时还显示了其引力和湍流特性与银河系 - 动态环境的耦合。

We examine the role of the large-scale galactic-dynamical environment in setting the properties of giant molecular clouds in Milky Way-like galaxies. We perform three high-resolution simulations of Milky Way-like discs with the moving-mesh hydrodynamics code Arepo, yielding a statistical sample of $\sim 80,000$ giant molecular clouds and $\sim 55,000$ HI clouds. We account for the self-gravity of the gas, momentum and thermal energy injection from supernovae and HII regions, mass injection from stellar winds, and the non-equilibrium chemistry of hydrogen, carbon and oxygen. By varying the external gravitational potential, we probe galactic-dynamical environments spanning an order of magnitude in the orbital angular velocity, gravitational stability, mid-plane pressure and the gradient of the galactic rotation curve. The simulated molecular clouds are highly overdense ($\sim 100\times$) and over-pressured ($\sim 25\times$) relative to the ambient interstellar medium. Their gravo-turbulent and star-forming properties are decoupled from the dynamics of the galactic mid-plane, so that the kpc-scale star formation rate surface density is related only to the number of molecular clouds per unit area of the galactic mid-plane. Despite this, the clouds display clear, statistically-significant correlations of their rotational properties with the rates of galactic shearing and gravitational free-fall. We find that galactic rotation and gravitational instability can influence their elongation, angular momenta, and tangential velocity dispersions. The lower pressures and densities of the HI clouds allow for a greater range of significant dynamical correlations, mirroring the rotational properties of the molecular clouds, while also displaying a coupling of their gravitational and turbulent properties to the galactic-dynamical environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源